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The stability of a two-fluid vortex is studied as a step towards understanding the 
separat,ion and containment problems in a gaseous-core nuclear rocket. In 
particular, the linear hydrodynamic stability of two incompressible, immiscible, 
viscous fluids occupying separate annular regions of a cylindrical Couette 
apparatus is considered. Neglecting surface tension and gravity, a conservative 
assumption, the governing equations for erbitrary jumps in fluid properties are 
derived and numerical solutions to the resultant eigenvalue problems obtained. 
Results are presented for the effect on neutral stability of density and viscosity 
jumps, varying gap widths, and differing fluid-fluid interfacial positions. The 
solutions are limited, however, to the case of stably stratified fluids and a 
stationary outer cylinder. 

Two separate modes (multiple eigenvalues) have been discovered for all oases 
in which two fluids, differing in any property, are present. A rationale is pre- 
sented for this phenomenon as well as for most of the other observed results. 

While most results are believed to be manifestations of the Taylor cylindrical 
Couette instability phenomenon, evidence is presented for the existence of 
additional ‘hidden ’ eigenvalues attributable to the classical Kelvin-Helmholtz 
and/or the recently reported Yih viscosity-stratification instability phenomena. 

1. Introduction 

Over the past decade several hydrodynamic vortex schemes have been proposed 
to help solve the separation and containment problems of gas-core nuclear 
rockets. This paper is the first step in analyzing the hydrodynamic stability of the 
MHD vortex system proposed by Johnson (1  966). In this concept areactor ca.vity 
is formed by concentric cylindrical electrodes, with annular regions of propellant 
(hydrogen), fuel (uranium), and propellant, respectively, filling the cavity. An 
axial magnetic field is applied, and a radial current drawn. As a result the fluid is 
accelerated azimuthally so that a three-region, two-fluid vortex is formed. 

All containment schemes aim at increasing the fuel residence time whiIe 
maintaining the desired propellant flow rate. This can be accomplished, theo- 
retically a t  least, by maintaining separation of the fuel and propellant during the 
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flow process. In  the Johnson (1966) system, the separation is achieved by 
balancing centrifugal and radial pressure forces in the vortex. In the analysis 
presented here it has been assumed that the flow rate requirements yield axial 
velocities small compared to the calculated azimuthal velocities, and axial 
Reynolds numbers small compared to the critical values for annular pipe flow. 
The latter requirement makes the axial velocity a stabilizing influence on the 
cylindrical Couette instability (Di Prima 1960; Hughes & Reid 1968), while the 
former tends to ensure that any Kelvin-Helmholtz instability due to the axial 
velocity distribution will be damped out by the strong radial pressure gradient 
(Chandrasekhar 1961). Thus, neglect of any axial body force or pressure gradient 
should be conservative. 

The expected instability phenomena are related to centrifugal forces, shear, 
and the large density and viscosity gradients. Questions to be answered involve 
the relative importance of these phenomena, the adequacy of the axial magnetic 
field as a stabilizing factor, especially in a dissipative environment, and the trend 
effects of various parameters on, stability. All of these questions can be studied 
by considering the model problem of a classical cylindrical Couette apparatus 
with two annular fluid regions and an applied axial magnetic field. This model 
does, admittedly, substitute mechanical rotation for the Lorentz force-induced 
rotation and does ignore the effects of radial current, axial flow and finite length 
(i.e. Ekman layer interactions), but it also provides a manageable, albeit com- 
plicated, approximation to a difficult problem. Furthermore, this model should 
yield some answers to all of the aforementioned questions. 

The stably stratified (heavy outer fluid) case can be investigated via neutral 
stability curves whereas the unstably stratified version requires the calculation 
of growth rates, at  least when MHD effects are negligible. As a consequence of 
this difference, as well as the scope of the full problem, the investigation has been 
divided into three parts. This paper reports on the stably stratified case without 
MHD effects. A computer program is already available to evaluate the changes 
due to MHD effects, while work on the unstably stratified problem is to be taken 
up in the future. 

( b )  Earlier work 
The cylindrical Couette problem was first considered by Lord Rayleigh (1920), 
who investigated the inviscid, one-fluid problem from a heuristic viewpoint. He 
concluded that the flow is stable if and only if the square of the circulation (I?) 
always rises with increasing radius. Taylor (1923) examined the viscous, narrow- 
gap version of this problem theoretically and experimentally and found that 
when a physically significant parameter (now termed the Taylor number and 
related to the ratio of rotational to viscous forces) exceeded a critical value, 
instability resulted. Following Taylor, many papers were written describing 
experiments and/or linear stability analyses using several different techniques 
on variations of Taylor’s problem. This body of work culminated in the monu- 
mental treatise of Chandrasekhar (1  961), whose bibliography quite adequately 
covers the literature to that date. 

Subsequent theoretical work can be divided into narrow and wide gap analyses. 
Some of the narrow gap analyses include investigation of radial density variations 
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(Yih 1961 ; Pao 1966) and superposed axial flow (Di Prima 1960; Hughes & Reid 
1968) among other effects. Some of the wide gap analyses have considered Taylor’s 
original problem, with or without assuming axisymmetric perturbations, for 
various ranges of parameters (Krueger, Gross & Di Prima 1966; Gross 1965; 
Roberts 1965; and Sparrow, Munro & Jonsson 1964). A wide gap analysis of a 
case with radial density variations due to a temperature gradient has also been 
published (Walowit, Tsao & Di Prima 1964). 

The experimental area has developed very rapidly since 1961. Among the 
prominent contributors (with representative papers) are Donnelly (Donnelly & 
Schwarz 1965), Snyder (Snyder & Lambert 1966), and Coles (1965). Although 
generally limited to narrow gap widths and a singIe fluid, these investigators 
have reported on a large variety of linear and non-linear, laminar and turbulent 
phenomena. 

Recently, a non-linear analysis of Taylor’s problem (Davey, Di Prima & 
Stuart 1968) has shown how the Taylor vortices become unstable at larger (super- 
critical) Taylor numbers, and thus has partially explained the experimental 
observations of Taylor (1923) and Coles (1965). 

In  the area of two-fluid problems, the classical analyses of the Rayleigh-Taylor 
(R-T) and Kelvin-Helmholtz (K-H) instabilities (involving rectilinear flows) are 
well covered by Chandrasekhar (1961), and Yih (1967) has recently reported an 
instability, henceforth called the Yih instability, which is generated by a strati- 
fication in viscosity. Finally, an inviscid analysis of a two-fluid, wide-gap 
cylindrical Couette apparatus has been reported (Reshotko & Monnin 1965) but, 
aside from the limitation to non-dissipative flow, the authors failed to allow 
for motion of the fluid-fluid interface, so that their conclusions may be in 
error. 

In this paper the effect on the linear stability of a two-fluid, cylindrical Couette 
flow of jumps in fluid properties of varying magnitude, of variations in interfacial 
position, and of varying gap width is investigated. 

2. The primary flow 
Consider two infinitely long, concentric cylinders of radii R, < €2, with two 

immiscible, viscous fluids of differing but constant densities, p,, p,, and kinematic 
viscosities, v,, v2, filling the annulus between them. Fluid 1 is to be found in 
R, 6 r 6 R, and fluid 2 in R, 6 r < R,, where R, is the radius of the equilibrium 
fluid-fluid interface and T is the radius in the usual r ,  8, z cylindrical co-ordinate 
system. The inner and outer cylinders are rotating independently with angular 
velocities a, and Q2, respectively. The equations describing the flow in each fluid 
region, ignoring surface tension, are given by 

pDv/Dt+Vp = div(pvdefv), (defv E (gradv)+(gradv)*) (1) 

( 2 )  

DplDt = 0, (3) 

DRSlDt = v,(R,), (4) 

v . v  = 0, 
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where t is time, D/Dt = a/at + v.  V is the substantial derivative, p is pressure, 
v the vector velocity, and v, the radial component of velocity. (An asterisk 
denotes the transpose of a tensor.) Definition of the problem is completed by the 
non-slip boundary conditions at  r = R,, R,, R, and the continuity-of-shear 
condition at  r = R,, 

We now seek a solution of this system of equations and boundary conditions 
which is independent of time and has only an azimuthal velocity component 
varying solely with the radius. Proceeding as in the single-fluid case, we find that 
such a solution exists and can be written in the form 

( 5 )  
V,(r) = A,r+B,/r (R, < r < RJ7 
V,(r) = A,r+B,/r (R, < r d R,), V ( r )  = 

where A,, A,, B,, and B,, are given, by virtue of the boundary conditions, as 

yn(w - 1) 12Ql(xs+ A)2 B, = 

where 

y = p2/p1, n = v2/v1, 0 = SZ,/SZ,, 1 = R,- R,, A = R$, xs = (R,- Rl)/l. 

The corresponding pressure distribution is given within each region by 

dpldr = pV2(r ) / r  (7) 

but it disappears from the stability problem and need not be determined 
explicitly. t 

t In tho presence of a constant axial pressure gradient, ap/az, and any constant axial 
body force, B'*( = -pg, for example), there is superimposed on the azimuthal motion an 
axial velocity distribution of the form 

v, = C + D  l n ~ + ( l / 4 p )  (@~/Liz--3',) v2, 

where C and D are constants, different within each fluid region. It is this velocity that has 
been assumed small enough so that it contributes a stabilizing effect only, and thus may be 
neglected. 
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3. The perturbation equations 
If we perturb about stationary values, linearize the scalar equivalents of (1)-(4) 

about the stationary values, and then assume normal mode decompositions for 
the perturbations of the form? 

v = (up, v,, v,) = (u(r) cos kx, V ( r )  + v ( r )  cos kz, W ( T )  sin kz) exp (st + im@, (i) 

(ii) 

we obtain the following set of linear perturbation equations, after subtracting the 
corresponding equations for the stationary quantities, 

D*u = - {im(v/r) + kw}, (8) 

(s+?!!y sp = 0, (9) 

where D = d/dr and D* 3 ( d / d r ) + ( l / r ) ,  

k is real, m is a real integer, and s is a complex number whose real part determines 
stability and imaginary part overstability . 

By assumption Sp = 0 within each fluid region, so (9) is identically satisfied 
and (1 1) reduces to 

P 

The bracketed term in (10) vanishes only if m = 5 = 0. For the two-fluid case this 
implies u(Rs) = 0, so that r, = 0, since no corrugation can exist without a velocity 
component normal to the interface. If m + 0 or s + 0 (10) can be solved for rs, 

u(Rs) Rs r, = 
sRs + im V (  R,) ' 

t In  some cases we have used the same symbol for the whole variable and its stationary 
part. This should cause no confusion since the whole variables henceforth do not appear. 
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Using ( l o a ) ,  rs can be eliminated wherever it appears so that the remaining 
equations are (S), ( 1  1 a ) ,  ( 1 2 ) ,  and (13), a set of four equations with four unknowns. 

Let us now define functions 5 in region 1 (R, < r < R,J and Zj in region 2 
(R, 6 r < R,) as follows: 

where a = kl,  i = 4- 1,  D = d /dx ,  x = r / l .  Then (S), ( l l a ) ,  ( 1 2 )  and (13)  can be 
decomposed as shown below: 

DZ, = - (2, + imZ,)/x - z,, 
DZ, = (2, + Z,)/X, 

( 1 4 )  

(15)  

DZ, = z,/x, (16)  

DZ, = xM,(x) 2, + {2: __ + J:‘( __ ax + t)} - Z, + Z,/x, 

DZ, = ima2Z, + .{az + M,(x)} 2, +a%,; 

DY, = - (Y, + imY,)/x - Y,, 
Dy2 = (yZ f y5)/x, 

( 1 9 )  

(20) 

(21 )  

DY, = Y , / X ,  ( 2 2 )  

all of which are valid for 1 + A  2 x > x,+A, and 

DY, = ima2Y, + x{a2 + M,(x)) y3 + a2Y,; (25) 

which are valid for xs+ A > x 2 A. In the above the following definitions have 
been used: 

a = A,/A,, p1 = Bl/A,Z2, p2 = B,/A,12, T = Taylor number = - 4A,fill4/vq, 

T‘ = -A,T/Ql, Ml(x) = (m/x)2+a2+i(F- *mJT’{l+ (pl/x2)}), (26 )  

M,(x) = (m/x)2 + u2 + i/n(c - +mJT’(a + (pz/z2)}), c = Im ( 8 )  12/v,. 

Also, since we are only interestedinneutral stability limits, we have set Re (s) = 0. 
(Im ( ) stands for ‘imaginary part of’ and Re ( ) for ‘real part of’). 



Linear stability of a two-fluid vortex. Part 1 97 

Equations (14)-(  19) and (20)-(25) constitute the perturbation equations in a 
form convenient for numerical integration. 

4. The boundary conditions 
The boundary conditions at the cylindrical surfaces are, in the new notation, 

Z , ( l + A )  = Z,(l+A) = Z 3 ( 1 + A )  = 0,  

Y,(A) = Y,(A) = Y3(A) = 0. 

( 2 7 )  

( 2 8 )  

The ‘no-slip ’ condition at the fluid-fluid interface is more complicated because 
the position of the interface has also been perturbed. Using Taylor series expan- 
sions about the unperturbed interface location and the assumption of small 
perturbations, one can show (Schneyer 1968) that continuity of the vector 
velocity at the interface yields the conditions: 

Y, = z,, Yz = z,++i - -pqz,, Y3 = z3, (29)  
[c + m V / ( x s  + A) 

where all functions are evaluated at  x = x ,  + A ,  and 

F(x,+ A) = - +.J!7”{(xs + A )  + p l / ( x ,  + A)}. 

Equations (27)-(  29) are sufficient boundary conditions for the sixth-order 
system, (14)-( 19) and (20) - (25) .  The fact that they are in the form of conditions for 
a two-point eigenvalue problem makes them inconvenient to use numerically. 
We therefore use them, and the differential equations, to generate a full set of six 
initial conditions for each region in the manner of Harris & Reid (1964) ,  Krueger 
et al. (1966) ,  and many others. In  this solution scheme, advantage is taken of the 
linearity of the system to determine three arbitrary, orthogonal solution vectors, 
a linear Combination of which determines the linear manifold of all solution 
vectors with the three given initial conditions. Thus, only the three additional 
boundary conditions left unspecified at the fluid-fluid interface (x,  + A ) ,  which 
are to become initial conditions, need be determined. The details of the derivation 
are given in Schneyer (1968);  the results are 

Y5 = ynZ, - im(yn - 1) Z,, Y6 = ynZ, - a2(yn - 1 )  (x,  + A )  Z,, 

where all functions are evaluated at  x = xs + A. We note that if m = C = 0, two 
changes in conditions (29 )  and (30 )  occur; the modified conditions are 
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Yjl)(A) Y$z)(A) Y$3)(A) 

YJ1)(A) YJz)(A) YJ3)(A) 
YJ1)(A) YJQ(A) YJ3)(A) 

5. Method of solution 
A perusal of (14)-(25) shows that there is a pole at  x = 0. Increased numerical 

accuracy can be achieved, therefore, by performing the integration from x = 1 + A 
to x = A rather than vice versa. Thus, (14)-( 19) are integrated from x = 1 + A  to 
x = xs + A, starting with (27) and one of Z,, Z,, 2, set equal to one and the others 
zero, as initial conditions. Using (29) and (30), the Zj’s are related to the q ’ s  
across the fluid-fluid interface at  xs+A;  these relations then form the initial 
conditions for (20)-(25) to be integrated to x = A. This procedure is repeated 
twice more with different initial condition vectors at x = 1 + A .  Because of the 
homogeneity of the required conditions at x = A, a necessary condition for the 
existence of a solution is 

= 0, (31) 

For a given m and a, we shall denote by (T,, C,) any combination of T and C which 
satisfies (31) (or (31 a) ) ;  this combination constitutes the ‘complex eigenvalue ’ 
of the system.? Since the minimum T, over all possible values of m and a is the 
quantity physically observed, we shall denote the minimum T, over all possible 
values of a (and its associated C,) by (Ta,6J, while the minimum T, over all 
possible values of m (and its associated 2,) will be denoted by (q, 6,). 

The actual computational scheme is given in detail in Schneyer (1968) and 
represents a slight modification of the numerical scheme described in Krueger, 
Gross & Di Prima (1966). The calculations were carried out in single-precision, 
floating-point arithmetic on a CDC 6400 using a fifth-order Runge-Kutta inte- 
gration scheme with variable step size and a Gaussian elimination determinant- 
evaluation scheme. A comparison of results due to Krueger, Gross & Di Prima 
(1966) (denoted by a subscript K), Roberts (1965) (denoted by a subscript R),  
and the authors (denoted by a subscript S) is shown in table 1. only the last two, 
starred, cases shown in the table differ by more than the quoted accuracy of 
Krueger, Gross & Di Prima ( & 2 in the fourth significant figure), and T, = 3509.71 
is closer to TR = 3509.52 than is TK = 3509.9, although Roberts claims signi- 
ficance for all six digits. As a result, it is believed that one can have confidence in 
at least three significant figures in T, a, and a, and possibly a fourth significant 
figure in T and C if T < 50,000. 

The mathematical eigenvalue, for real m and a, is c = c, + i a  and T is only a parameter, 
but setting c, 0, in order to calculate the neutral stability limits, has made (T, a) the 
new ‘eigenvalue’ for the problem. Furthermore, while the equations and boundary condi- 
tions clearly indicate that T‘ = (-A,/!2,)  T would be a more ‘proper’ parameter, T has 
been used for historical and comparison purposes. 
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w mc a 

0 0 3.128 
-0.8 3 3.561 
-1.0 4 3.680 
-1.25 5 3.774 
-1.5 6 4.002 
-1.75* 6 3.986 
-2.0” 7 4.483 

- - 
TK TB T R  CK % 

3,509.9 3,509.7 3,509.52 0 0 
- 13,730 13,728.2 - 15.106 - 15.l.057 

20,072 20,067-9 - 23.358 - 23.3576 
- 33‘102 - 33.1032 30,632 30,622.3 - 

45,307 45,289.8 -43.616 -43’6182 
65,411 65,370.2 - 51.537 - 51.5340 
91,298 91,234.8 - 64.147 - 64.1567 

- 

- 

__ 
- 

TABLE 1. Comparison of results for the case y = 1, n = 1, 3 = 0.95 

6. Results and conclusions 
The results of our calculations are neutral stability curves, and consequently 

only results for stably stratified flows ( y  2 1) are presented. This limitation 
eliminates the possibility of a Rayleigh-Taylor instability. There are five 
physical parameters ( y ,  n, w ,  x,, 7 = R,/R,) of interest. Because of this large 
number, specific values of these parameters have been chosen to constitute a 
‘base’ case ( y  = 2 ,  n = 2, w = 0, x, = 8, 7 = 0.95) from which nearly all para- 
meter variations originate. Thus, the variation of a parameter has usually been 
analyzed by varying only that parameter in the ‘base’ case. Because several 
single-fluid investigations (Chandrasekhar 1961; Pao 1966; and Krueger, Gross & 
Di Prima 1966; for instance) have considered the variations in T, and associated 
parameters with changing w (at least for - 1 < w < l), only the case w = 0 is 
treated here. 

It has been found that for a given azimuthal wave-number, m, the ‘eigenvalues ’ 
trace out a curve in T,  - 6, - a space. For most cases the curve has a shallow trough- 
like shape which is only slightly skewed out of a Ce = constant plane. In the course 
of investigating the effect of changing density ratio, y ,  the existence of modes 
(multiple ‘ eigenvalues ’) has been uncovered by the calculation of two different 
sets of (T‘,Ce) for identical wave-numbers. Except for a few ‘anomalous’ cases, 
which will be discussed in detail later, the modes are easily characterized by their 
positions along the Ce axis; that is, the mode whose curve lies near the more 
negative Ce is characterized as ‘mode I ’ while that lying near the more positive Ce is 
denoted as ‘mode I1 ’. Projections of a T, - Ce -a modal curve (T, - a curves) for a 
representative case is shown in figure 1. The modal relationship of the curves in 
figure 1 is somewhat atypical insofar as the Taylor number of the controlling 
mode (the mode with a smaller T,) for nearly all cases has been found to occur at 
a lower axial wave-number a as well. This results in the usual modal curves having 
minima which exhibit a wider separation than shown in the figure. 

Figure 2 shows the two sets of modal ‘eigenvalues’ found for the cases 
1 < y < 2, n = 1, w = 0, xs = 4, 7 = 0.95, m = 1. From these results one may 
conclude that: (a )  Only two modes exist. The manner in which the two sets of 
modal ‘ eigenvafues ’ smoothly approach the single-fluid ‘ eigenvalue ’, which is 
known to be unique (see Chandrasekhar 1961, for instance), combined with the 
complete absence of any evidence of a third ‘eigenvalue ’, even for y only slightly 

7-2 
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above unity, very strongly suggests such a conclusion. ( b )  The instability pheno- 
menon being observed is a Taylor cylindrical Couette instability for both modes. 
This conclusion is also based on the single-fluid result-a Taylor phenomenon- 
being smoothly approached. In  fact, the similarity evident among the curves in 
Te-ce-a space for all but the ‘anomalous’ cases and the manner in which, for 
most cases, they have smoothly evolved from single-fluid results indicates that 
nearly all the results obtained are due to Taylor phenomena. ( G )  The stability of 
the system, as measured by T, or T,, increases with increasing y, at least with 
regard to the Taylor instability. This result is probably due to the increased 
inertia effecting an angular momentum instability. 

a 

FIGURE 1. Taylor number us. axial wave-number for both modes of 
7 = 1.01, V, = 1, w = 0, 7 = 0.95, 2, = 4, W, = 1. 

Figure 3 shows the results for the cases 1 < y < 1.5, n = 2, w = 0, xs = i, 
7 = 0.95, m = 1. The two modes are seen to exist for all y > 1 and even show a 
differing behaviour for the smaller y. As a result, it  is obvious that the modes 
represent a two-fluid phenomenon rather than one due to jumps in kinematic or 
dynamic viscosity or density alone. 

The physical origin of the two modes cannot be conclusively proved, but it is 
believed they are manifestations of the classical Taylor instability phenomenon 
in each of the two fluids separately, modified from single-fluid results by the 
interfacial-boundary interaction of the fluids. If this interpretation is correct, 
figure 2 seems to indicate that mode I corresponds to fluid 1 and mode I1 to 
fluid 2, since it is the inertia of fluid 2 which is increased by raising y. 
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Finally, the shift in controlling mode from I to I1 as y increases in figure 3 
occurs around yn  = 1 (y  = $). This would seem to indicate that the dynamic 
viscosity ratio is the dominant influence in determining the controlling mode. 
A possible explanation for this result may be found in Rayleigh's inviscid 
criterion, which, while not correct for viscous fluids, should indicate the proper 
trend. Thus, while r2 is always decreasing with increasing radius for the w = 0 
case, yn < 1 causes a sudden, rapid decrease in r2 on the fluid 2 side of the 
fluid-fluid interface, while yn > 1 puts the more severe condition in fluid 1. If the 
relationship between fluids and modes discussed above is correct, mode I should 
be the controlling mode for large yn and mode I1 should control for small yn, 
with the crossover occurring around yn = 1. This is the condition observed in 
figures 3,4 and 5, with only the exact value of yn at which the crossover occurs 
varying among the three cases. 

7 
0.95 
0.95 
0.95 
0.95 
0.75 
0.75 
0.75 
0.50 
0.50 
0.50 
0.30 
0-30 
0.25 
0.25 
0.24 
0.23 
0.22 
0.215 
0.2125 
0.2110 
0.20 
0.15 
0.10 
0.05 

rn 
3 
4 
5 
6 
0 
1 
2 
0 
1 
2 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

TaI 

4,926.8 
4,865.8 
4,854.7 
4,890.6 
7,079.4 
6,208.5 
6,334.5 

9,674.6 
11,638 

22,691 
22,912 
27,064 
23,757 
50,158 
59,882 
73,956 
96,930 

117,000 
134,292 
157,750 
33,483 
53,110 

105,192 
363,617 

- 
CI 

- 20.60 
- 24.60 
- 28.71 
- 32.97 
- 8.34 
- 17.86 
- 28.80 
- 6.80 
- 23.64 
- 67.77 
- 3-08 
- 36.94 

0 
- 47.96 
- 51.69 
- 56.54 
- 63.59 
- 69.27 
- 74'00 
- 80.20 

0 
0 
0 
0 

a1 

2.92 
2.86 
2-80 
2.73 
3.15 
2.95 
2.90 
3.19 
2.95 
3.33 
3-24 
3.21 
3.34 
3.18 
3.13 
3.05 
2-92 
2.83 
2.76 
2.68 
3.39 
3.45 
3.52 
3.62 

Tan 
6,7654 
7,449.6 
8,268.7 
9,185-3 
7,079.4 
9,704.9 

15,129 
11,538 
44,097 
49,582 
22,912 

132,823 
23,757 
- 
- 
- 
- 
- 
- 
- 

33,483 
53,110 

105,192 
363,617 

- 
%I 

- 3.83 
- 8.59 
- 13.70 
- 19.14 
+ 8.34 
- 2.00 
- 15.36 
+ 6.80 
- 12.36 
- 34.94 
+ 3.08 
- 19.21 

0 
- 
- 
- 
- 
- 

- 
- 
0 
0 
0 
0 

a11 

3.41 
3.51 
3.60 
3.69 
3.15 
2-95 
3.73 
3.19 
3.83 
4.25 
3-24 
4-17 
3.34 
- 
_- 
-_ 
- 
- 
_- 
- 

3.39 
3.45 
3.52 
3.62 

TABLE 2. Variation in minimum Taylor number and associated parameters for both modes 
with azimuthal wave-number and radius ratio for y = 2, n = 2, w = 0, x, = + 

The variation in T, with 7 is shown in figure 6 and table 2. The results exhibit 
two striking characteristics. The first and foremost is the monotonic increase in 
T, with increasing gap width (decreasing 7). An explanation for this trend again 
can be found in the effect of increasing gap width on B( r2) through its effect on 
the slope of the steady velocity profile. Since T* N !ill, an increase in Taylor 
number steepens the steady velocity profile. Thus, a rising T can balance an 
increase in gap width and result in the restoration or maintenance of neutral 
stability. 
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The other striking characteristic is the progressive trend with increasing gap 
width towards a stationary ‘donut ’vortex (rn = 0, C = 0) as the criticalinstability. 
Although such a result has been found in all single-fluid investigations when 
w = 0, the results of the present investigation indicate that it is a rare occurrence 
in the two-fluid case. The probable explanation lies in the decreasing influence 
exerted by one fluid on the instability mechanism of the other, due to the 
increased distance from the fluid-fluid interface to the ‘site’ of the perturbation. 
This explanation assumes, of course, the hypothesized fluid-mode relationship, 
but is supported by the fact that both modes exhibit the same behaviour. 

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 
r 

FIGURE 6. Critical Taylor number wus. radius ratio for both modes of 
y = 2 , n = ~ , w = 0 , x s = + .  

From all of the above discussion it seems clear that only Taylor phenomena 
have manifested themselves here. The shape of the T, - n curves and the con- 
tinuous variation in ‘ eigenvalues ’ from a single-fluid, Taylor ‘ eigenvalue ’ 
definitely indicate this. Any other ‘eigenvalues’ which may exist and are 
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attributable to some other mechanism must lie in a different, unsearched region 
of ‘ eigenvalue ’ space and must await further analytic investigation. 

It should be noted here that when m = 0 one always finds that the modes are 
related by Tu, = Tun, a, = a,,, and 5, = - CII.t More generally, taking the complex 
conjugate of (26)-(42)) one finds that the equations are invariant if T + T ,  a2 -+ a2, 

m-+ -m, C - t -  C. In fact, for the general (c, + 0) case, the equations remain 
invariant if T + T ,  a2 --f a2, m -+ - m, c + c*, so that if c = c, + i 5  is an eigenvalue 
for T, i- a, and m, then c* = c, - i C  is an eigenvalue for T, k a, - m. Thus, the 
observed phenomenon is simply a special case of the above eigenvalue relation. 
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FIGURE 7. Taylor number vs. axial wave-number for ‘anomalous’ case of 
mode I, y = 2, n = 1, o = 0, 7 = 0.95, x, = &, m = 4. 

Figures 4 and 5 illustrate the variation in critical Taylor number with kine- 
matic viscosityratio, n,  for density ratios of 2 and 1.1, respectively. Between them, 
they also illustrate the influence of the dynamic viscosity ratio, yn. It can be seen 
that the two curves are qualitatively very similar. As a result only the y = 2 case 
has been thoroughly investigated. The investigation has revealed at least two 
‘anomalous’ cases which, incidentally, are not shown in figure 4. The first such 
case has been discovered for y = 2, n = 1, m = 4 (mode I), and has its T, - a curve 
shown in figure 7, while the second has been found for y = 2, n = 0.045, m = 1 
(mode 11). While not apparent in figure 7, the ‘anomalous ’ T, - Ee - a curve is very 

f This result for m = 0, which follows from taking the complex conjugate of the 
governing equations and boundary conditions, was pointed out to  the authors by Professor 
S. H. Davis in a private communication and led the authors to the formulation of the 
relationship for a general m which follows in the text. 
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three-dimensional in that the Ce spread is many times larger than that of a 
‘regular ’ curve for the same spread in a. We shall now discuss separately these 
two different sets of results, the ‘regular’ and the ‘anomalous’. 

Nearly all the explanations for the phenomena observed in varying viscosity for 
the ‘regular’ points have been given above. Thus, the fact that mode I is con- 
trolling at  large yn while mode I1 controls at small y n  has already been explained. 
The monotonic decrease in T, with decreasing n (and y n )  exhibited by mode I1 is 
probably also due to the accelerated decrease in r2 which lies at  the heart of that 
argument. On the other hand, the minimum exhibited by mode I at y n  M 1 can 
only be partially f ie .  for y n  < 1) explained by such an argument. The rise for 
yn  > 1 is probably due to the rise in the dissipative capability of the system which 
occurs as the viscosity increases. 

The most obvious conclusion to be drawn from the ‘regular ’ results is that 
stability is enhanced by increasing the kinematic viscosity ratio; that is, the 
Taylor cylindrical Couette phenomenon is stabilized by increasing n. This con- 
clusion is based on the same phenomenological arguments used above to link the 
results to a Taylor phenomenon. In  fact, any other phenomena which might have 
manifested themselves would probably not have exhibited the same %-a 
characteristics and would have been classified ‘anomalous’. We now turn to 
these phenomena. 

The completely different character exhibited by the T, - Ce - a curves of the 
‘anomalous ’ cases has led to the belief that they represent different phenomena, 
whose (eigenvalues’ were found because they happened to lie close enough to 
Taylor ‘eigenvalues ’. The most likely phenomena are the Kelvin-Helmholtz 
(K-H) and Yih instabilities, since they are possible mechanisms in the present 
model. 

The K-H, or inviscid-shear, instability is known to  be possible in parallel shear 
flows if and only if the steady velocity profile exhibits a ‘shear-like character’ 
(a continuous velocity profile of a homogeneous fluid exhibits a ‘shear-like 
character’ if its curvature undergoes a sign change). Since for the cases con- 
sidered, a > 0, PI < 0, and PZ < 0, we find that DF < 0 and D2F > 0. This repre- 
sents a decelerating (with radius) flow whose deceleration rate is declining. The 
only possibility of generating a shear-type profile, therefore, lies in making DG 
more negative than DE at the fluid-fluid interface, whichis exactly the situation 
for y n  < 1. It would appear, therefore, that one could not use the K-H instability 
to explain all the ‘ anomalous ’ results since half of them occur for yn  > 1. Stuart 
(1967)’ however, has suggested that the significance of the ‘shear-like character’ 
lies in the maximum in the associated vorticity profile which coincidentally occurs 
in parallel shear flows. For rotational flows this coincidence no longer exists. For 
the cases considered here, the vorticity is a constant within a fluid with the 
maximum occurring in the inner fluid for yn > 1 and the outer fluid for y n  < 1. 
If one accepts the hypothesized relationship between the modes and the fluids, 
then all the ‘anomalous ’ cases do in fact occur in the fluid with the larger vorticity. 
Thus, from this viewpoint, all of the ‘anomalous ’ cases could be K-H instabilities. 

The Yih, or viscosity-stratification, instability (Yih 1967), unfortunately, is 
not well understood. It seems to be similar to the K-H instability in that both 
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yield growing waves at  the fluid-fluid interface, but the Yih instability is tied in 
an essential manner to the viscosity jump. Whether this tie is to be found in the 
type of steady velocity profile the jump imposes, in the dissipative or diffusive 
rate jumps that accompany a viscosity jump, in the distortion of a K-H stable 
profile to a K-H unstable profile by viscous action on the perturbed velocity 

profile, or in some other mechanism is not yet known. Furthermore, the depen- 
dence onwave-number is unclear since Yih (1967), in the only known investigation 
of this instability, chose to solve the problem by an analytic, small wave- 
number expansion technique with evaluation limited to the first two terms. On 
the other hand, the instability is known to occur for both K-H stable and K-H 
unstable steady velocity profiles. Thus, while detailed characteristics of the Yih 
instability are unknown, the fact that it is apparently not inhibited by the yn > 1 
condition makes it a possible source for all of the ‘anomalous’ cases. 

Although only four ‘anomalous7 cases have been found among more than 
100 cases evaluated, it seems likely that many ‘anomalous’ results remain 
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‘buried ’ in remote (from the Taylor ‘eigenvalue ’ region) areas of the ‘eigenvalue ’ 
plane. Thus an analytic investigation of this problem might reveal many ‘eigen- 
values ’ whose existence has only been suggested here. All the cases for which 
y n  < 1, for instance, are potentially K-H unstable. The fact that the Taylor 
numbers associated with the cylindrical Couette instability are over 100 times 
larger than those of the ‘anomalous’ cases, for which, in general, unconditional 
instability is indicated by T -+ 0 for sufficiently small a, emphasizes the im- 
portance of these hidden ‘eigenvalues’. Thus, a further investigation of this 
problem seems warranted.t 

9500 I 1 I 

4870 489012sEz! 4850 3 4 Mode I 5 6 
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FIGURE 9. Minimum Taylor number wa. azimuthal wave-number for 
both modes of y = 2, n = Q, o = 0, 2, = 4, 7 = 0.95. 

Figure 8 shows the variation in T, with interfacial position. It indicates that 
one can equilibrate the modes by shifting the interfacial position. In general, 
decreasing xs stabilizes mode I and destabilizes mode I1 and vice versa. Unfortu- 
nately, no adequate explanation for this behaviour has yet been found. 

An ‘anomalous’ case has been uncovered for y = 2, n = 2, w = 0, xs = 0.675, 
7 = 0.95, m = 1 (mode I). This case is unique in that it exhibits both the general 
‘anomalous’ behaviour of figure 7 while having a well defined critical Taylor 

t Professor J. T. Stuart, in a private communication, has suggested that it might prove 
rewarding to consider the inviscid stability problem with the correct velocity profile. This 
should yield the K-H instabilities, at  least. Determination of some of the eigenfunctions 
for both ‘regular’ and ‘anomalous’ cases might also prove quite revealing. 
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number of 24-01?,. The balance of forces which has resulted in a stable configura- 
tion for T < 24 is unknown. 

In figures 9 and 10 are shown typical Ta-m curves illustrating the well- 
defined minima (with @ denoting T,) for the controlling mode as well as the 
unification of the modes at  m = 0. 

FI~TJRE 10. Minimum Taylor number us. azimuthal wave-number for 
both modes of y = 2, n = %, w = 0, X, = 4, 7 = +. 

From the results discussed, i t  seems likeIy that the cylindrical Couette 
instability is not decisive in determining whether the proposed scheme could be 
used in a gas-core reactor. Determination of the origin of the ‘anomalous’ cases 
and their susceptibility to stabilization by an axial magnetic field therefore 
become the questions of major interest. 

Many more results were obtained than could be presented in the figures and 
tables included in this article. A complete set of tables has been deposited with 
the Editor of the Journal and is available upon request. 
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